Septal pacing using an inner guiding catheter without an outer sheath: A case series

Yusuke Morita, MD, PhD, Junji Morita, MD, Yusuke Kondo, MD, PhD, Takayuki Kitai, MD, Tsutomu Fujita, MD, Kazuaki Tanabe, MD, PhD

PII: S2214-0271(21)00251-7
Reference: HRCR 1250

To appear in: HeartRhythm Case Reports

Received Date: 19 October 2021
Revised Date: 30 November 2021
Accepted Date: 20 December 2021


This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Heart Rhythm Society. Published by Elsevier Inc.
Septal pacing using an inner guiding catheter without an outer sheath: A case series

Short title: Inner guiding catheter for Septal pacing

Yusuke Morita, MD, PhD\textsuperscript{a,c}; Junji Morita, MD\textsuperscript{a}; Yusuke Kondo, MD, PhD\textsuperscript{b}; Takayuki Kitai, MD\textsuperscript{a}; Tsutomu Fujita, MD\textsuperscript{a}; Kazuaki Tanabe, MD, PhD\textsuperscript{c}

\textsuperscript{a}Department of Cardiology, Sapporo Heart Center, Sapporo Cardio Vascular Clinic, 16-8-1 Kita 49 jou-higashi, Higashi-ku, Sapporo 007-0849, Japan

\textsuperscript{b}Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Japan

\textsuperscript{c}Division of Cardiology, Shimane University Faculty of Medicine, Japan

Conflicts of Interest Statement:

Dr. Kondo received lecture fees from Daiichi-Sankyo, Bayer, Abbott Medical Japan, Biotronik Japan, Boston Scientific, and Japan Lifeline, and research funds from Daiichi-Sankyo. The other authors have no conflicts of interest to declare.
**Corresponding Author:**

Junji Morita, MD

Department of Cardiology, Sapporo Heart Center, Sapporo Cardiovascular Clinic, Sapporo, Japan

16-8-1 Kita 49 jou-higashi, Higashi-ku, Sapporo 007-0849, Japan

E-mail: mjunji1982@yahoo.co.jp

**Word count:** 1527

**Keywords:** septal pacing, apical pacing, selectra, inner guiding catheter, pacemaker implantation
Introduction

Selectra 3D (Biotronik, Berlin, Germany) is a recently developed catheter-based lead delivery system with two perpendicular curves. Owing to its 3-dimensional (3D) shape, it is an effective sheath that allows a lead to easily be directed toward the ventricular septum. The Selectra 3D has two perpendicular curves and is also available in 3 curves; 65mm, 55mm and 40mm to accommodate different patient anatomies (Figure 1A and 1B). However, Selectra 3D has a diameter of 7.3 Fr. and thus requires an outer sheath of 9 Fr. As compared to a standard pacemaker implantation using Selectra 3D is problematic in that the delivery system is increased by one and the size is also larger, leading to increased costs and increased risk of bleeding.

The use of septal pacing has been reported to reduce chronic cardiac dysfunction as compared with apical pacing.\textsuperscript{1} However, it has been reported that 8\% of fluoroscopy-guided RV lead placements in the ventricular septum are unexpectedly placed at the free wall instead.\textsuperscript{2} This means that even if septal pacing is performed with fluoroscopic guidance it is not definite because of the variable cardiac long-axis orientation.\textsuperscript{3}
Considering the effort and cost of using an outer sheath we wondered if it would be possible to perform septal pacing without using an outer sheath. Herein, we report a case series of implantation using a Selectra 3D system without an outer sheath.

**Case series**

Between August and September of 2021, 10 consecutive patients were scheduled for elective dual chamber pacemaker implantation (Evity 8 DR-T, Biotronik, Berlin, Germany) at Sapporo Cardio Vascular Clinic. They were performed by a single young implanter and included in this study. Informed consent was obtained from all patients. Standard steps for pacemaker implantation were followed. First, a venogram was performed from the left upper extremity to check for any anatomical problems. Second, the pacemaker pocket was created in the left thoracic cavity and then two guidewires were inserted by extra thoracic puncture. Subsequently, Selectra 3D was inserted without an outer sheath (Figure 1C). The Selectra 3D was inserted into the right ventricular (RV) outflow tract and pulled counterclockwise toward the interventricular septum. Then, an RV lead with a straight stylet was inserted into the Selectra 3D. Contrast was performed in both the right anterior oblique position and the left anterior oblique position via Selectra 3D, and it was confirmed that the Selectra 3D was facing toward the septum. After confirming that the electrical parameters were adequate the
sheath was cut using a slitter. The atrial lead was screwed into the right atrial appendage through a 7 Fr peel-away sheath. We closed the pocket by suturing in three layers and the procedure was completed.

The RV lead placement time is the time from insertion of Selectra 3D to implantation of the RV lead and sheath slitting. Electrocardiography-synchronized cardiac computed tomography (CT) was performed in all patients during hospitalization to confirm the position of the leads.

Baseline characteristics and procedural outcomes were shown in Table 1. The mean age was 84 ± 6 years, and 20% of the patients were male. The procedure’s success rate was 100%, and the RV lead could be implanted with Selectra 3D without an outer sheath in all cases. The mean RV lead placement time was 9.1 ± 5.6 minutes. The sensed R-wave amplitude was 8.4 ± 3.1 mV, the pacing threshold was 0.6 ± 0.2 V, and the impedance was 641 ± 80 Ω. Postoperative CT confirmed that the RV lead tip was located at the septum in all cases (Figure 2). No procedure-related complications such as bleeding or lead dislodgement were observed during hospitalization.

**Discussion**

This case series demonstrated that a pacemaker could be implanted using Selectra 3D alone without using an outer sheath. The use of the Selectra 3D without the outer sheath resulted in
good electrical parameters and all patients confirmed septal pacing via CT. Furthermore, no procedure-related complications such as bleeding or lead dislodgement were observed.

Selectra 3D has a diameter of 7.3 Fr and is traditionally inserted into 9 Fr. outer sheath. The use of Selectra 3D alone has several advantages. First, using only one sheath simplifies the procedure. Second, this configuration is easier to insert even in cases of subclavian vein stenosis. Third, bleeding complications from the puncture site are expected to be reduced with the use of Selectra 3D. In addition, eliminating an outer sheath leads to cost reduction. Even if the lead is dislocated after the Selectra 3D is slitted, it can be replaced using stylet-driven leads.

The main problem during septal lead placement is unexpectedly attaching the lead to the RV free wall. Furthermore, patients with RV free-wall pacing have an increased rate of cardiac death and heart failure-related hospitalization compared to those with septal pacing.² To prevent RV free wall pacing fluoroscopic and electrocardiographic criteria for the documentation of pacing lead positioning have been described but these are inaccurate.⁴ Selectra 3D is a pre-shaped sheath with two perpendicular curves. Owing to these 3D curves the lead can be easily directed toward the septum without shaping the stylet. Furthermore,
even with the RV lead inserted, contrast can be obtained from the sheath to ensure that the lead is facing the septum.

This study has several limitations. This was a relatively small case series with no control arm. Second, these procedures were performed by single implanter. However, it is notable that even a young implanter with limited experience in implantation techniques was able to perform septal pacing in all cases. Finally, there were no clear criteria to determine which size of Selectra 3D to use. Further research is needed to determine whether it is possible to use different sizes depending on atrial diameter and vascular anatomy.

In conclusion, the use of Selectra 3D alone without an outer sheath resulted in adequate electrical parameters without increasing procedure-related complications. In addition, septal pacing was used in all cases showing that Selectra 3D has the potential to be an effective device for septal pacing.

Acknowledgments: The authors have no acknowledgements to declare.

Funding disclosure: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References:


**Figure legends:**

**Figure 1. The shape and insertion of the Selectra 3D sheath.**

A: The Selectra 3D has two perpendicular curves. B: The Selectra 3D sheath is also available in 3 curves; 65mm, 55mm and 40mm to accommodate different patient anatomies. C: The Selectra 3D sheath is inserted via subclavian vein without an outer sheath.
Figure 2. Postoperative computed tomography (CT).

The CT confirmed that the right ventricular lead tip was located at the septum in all cases.
Table 1. Patient’s background and procedure outcomes.

The use of the Selectra 3D without the outer sheath resulted in good electrical parameters and all patients confirmed septal pacing via computed tomography (CT).

<table>
<thead>
<tr>
<th>case</th>
<th>age</th>
<th>gender</th>
<th>arrhythmias</th>
<th>LVDD</th>
<th>LAd</th>
<th>success</th>
<th>procedure</th>
<th>size of selectra 3D</th>
<th>time to RV lead implantation (min)</th>
<th>R-wave amplitude (mV)</th>
<th>threshold (V)</th>
<th>impedance (Ω)</th>
<th>septal pacing via CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>male</td>
<td>SSS</td>
<td>50</td>
<td>43</td>
<td>Yes</td>
<td>65-L</td>
<td>24</td>
<td>5.7</td>
<td>0.4</td>
<td>604</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>female</td>
<td>SSS</td>
<td>50</td>
<td>32</td>
<td>Yes</td>
<td>65-L</td>
<td>7</td>
<td>9.1</td>
<td>0.7</td>
<td>585</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>74</td>
<td>female</td>
<td>SSS</td>
<td>43</td>
<td>35</td>
<td>Yes</td>
<td>65-L</td>
<td>3</td>
<td>10.1</td>
<td>0.9</td>
<td>702</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>93</td>
<td>female</td>
<td>CAVB</td>
<td>42</td>
<td>39</td>
<td>Yes</td>
<td>65-L</td>
<td>14</td>
<td>5.9</td>
<td>0.5</td>
<td>487</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>77</td>
<td>male</td>
<td>CAVB</td>
<td>49</td>
<td>28</td>
<td>Yes</td>
<td>40-S</td>
<td>8</td>
<td>6.2</td>
<td>0.7</td>
<td>607</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>86</td>
<td>female</td>
<td>CAVB</td>
<td>40</td>
<td>38</td>
<td>Yes</td>
<td>55-M</td>
<td>8</td>
<td>14.9</td>
<td>0.5</td>
<td>663</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>81</td>
<td>female</td>
<td>SSS</td>
<td>48</td>
<td>37</td>
<td>Yes</td>
<td>65-L</td>
<td>6</td>
<td>12.5</td>
<td>0.8</td>
<td>781</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>84</td>
<td>female</td>
<td>SSS</td>
<td>47</td>
<td>49</td>
<td>Yes</td>
<td>55-M</td>
<td>8</td>
<td>8</td>
<td>0.7</td>
<td>585</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>95</td>
<td>female</td>
<td>CAVB</td>
<td>45</td>
<td>46</td>
<td>Yes</td>
<td>55-M</td>
<td>8</td>
<td>6</td>
<td>0.7</td>
<td>721</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>female</td>
<td>AVB</td>
<td>42</td>
<td>33</td>
<td>Yes</td>
<td>65-L</td>
<td>5</td>
<td>5.1</td>
<td>0.4</td>
<td>682</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

LAd = left atrial diameter; LVDD = left ventricular end-diastolic diameter
Key Teaching Points:

- Selectra 3D (Biotronik, Berlin, Germany) is a recently developed catheter-based lead delivery system with two perpendicular curves. Owing to its 3-dimensional (3D) shape, it is an effective sheath that allows a lead to easily be directed toward the ventricular septum.

- The use of Selectra 3D alone without an outer sheath during pacemaker implantation resulted in adequate electrical parameters without increasing procedure-related complications.

- Septal pacing was used in all cases confirmed by computed tomography showing that Selectra 3D has the potential to be an effective device for septal pacing.