Leadless pacemaker interrogation interference after conversion of a left ventricular assist device

Ken Kawase, MD, Kenichiro Yamagata, MD, PhD, Kohei Ishibashi, MD, PhD, Norihide Fukushima, MD, PhD, Kengo Kusano, MD, PhD

PII: S2214-0271(22)00199-3
DOI: https://doi.org/10.1016/j.hrcr.2022.10.005
Reference: HRCR 1419

To appear in: HeartRhythm Case Reports

Received Date: 4 August 2022
Revised Date: 29 September 2022
Accepted Date: 3 October 2022

Please cite this article as: Kawase K, Yamagata K, Ishibashi K, Fukushima N, Kusano K, Leadless pacemaker interrogation interference after conversion of a left ventricular assist device, HeartRhythm Case Reports (2022), doi: https://doi.org/10.1016/j.hrcr.2022.10.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of Heart Rhythm Society.
Leadless pacemaker interrogation interference after conversion of a left ventricular assist device

Short Title:

Electromagnetic interference from left ventricular assist device

Ken Kawase MD, Kenichiro Yamagata MD, PhD, Kohei Ishibashi, MD, PhD, Norihide Fukushima MD, PhD, Kengo Kusano MD, PhD

a Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan

b Department of Transplant Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan

Corresponding Author:

Kenichiro Yamagata

Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1, Kishibe-Shinmachi, Suita, Osaka, Japan, 564-8565

E-mail: look.cardiology@gmail.com

Word Count:

1365 words
Keywords: Electromagnetic interference, interrogation inhibition, leadless pacemaker, left ventricular assist device, Micra, HeartMate II, HeartMate 3
Introduction

Left ventricular assist device (LVAD) is widely used for some patients with end-stage heart failure who require cardiac implantable electronic devices (CIEDs).\(^1\) Successful leadless pacemaker implantations have been reported with no remote complications.\(^2,3\) However, electromagnetic interference (EMI) in patients with LVAD between the programmer head and leadless pacemaker during implantations has also been reported, which could be solved by repositioning the leadless pacemaker.\(^4\) Here, we report a case of EMI between the programmer head and the leadless pacemaker (Micra VR, Medtronic, MN, USA) after conversion of the LVAD from Heartmate (HM) II (Abbott, St. Paul, MN, USA) to HM 3 (Abbott). Specific programmer head positioning was required to successfully interrogate the pacemaker.

Case Report

A 62-year-old male with end-stage heart failure due to ischemic cardiomyopathy underwent cardiac resynchronization therapy (CRT) and HM II implantation. The CRT had to be extracted due to device pocket infection. After extraction, the patient suffered from bradycardia even with LVAD support. Because of device infection\(^5\) and the right ventricle pacing was hemodynamically tolerable,\(^6\) we decided to implant a leadless pacemaker. The procedure was successfully performed, and there was no interference in interrogating between the programmer head and pacemaker (pacing mode: VVI, ventricular sensing threshold: 2.7 mV, ventricular pacing threshold: 0.38V/0.24 ms, impedance: 520 ohms, and % pacing: 99.9 %).

Despite having received antibacterial therapy, the patient had a high fever after the procedure. Chest computed tomography revealed a fluid surrounding the outflow duct of HM 2, where gallium-scintigraphy showed accumulation at the identical region. We concluded that the fever was due to an infection at the outflow duct of HM II. Hence, we performed mediastinum
irrigation of the area and converted from HM II to HM 3. After the operation, we could not interrogate the pacemaker despite a thorough investigation of the whole precordium with the programmer head. When the patient was able to sit upright, we positioned the programmer head on the back of the patient at the opposite side to the normal precordium, where we succeeded in interrogating the pacemaker showing no change in the pacemaker parameters. There was no EMI on the electrogram where the interrogation was possible. The patient was afebrile for 2 months and underwent heart transplantation. The patient provided written informed consent.

Discussion

To the best of our knowledge, this is the first study to report a conversion from HM II to HM 3 with a leadless pacemaker, resulting in interference of the leadless pacemaker interrogation. EMI between CIEDs and the programmer head with LVAD has been reported with various solutions, such as increasing the distance between the LVAD and CIED by extending the arm on the ipsilateral side of the CIED,7 utilizing a Faraday cage made with an iron pan to block electromagnetic field from the LVAD,8,9 and changing the rotation frequency of LVAD under 1300 rpm or over 11000 rpm to elude the transmission radiofrequency rate of the programmer head when HM II is implanted.7

In the current case, the pacemaker could initially be interrogated at the normal precordium position when HM II was implanted (Figure 1A, B). However, converting to HM 3 shortened the distance between the leadless pacemaker and the LVAD (Figure 1C, D), resulting in EMI between the programmer head and the pacemaker. We could not utilize a Faraday cage as the device was in the heart, and the rotation frequency could not be changed as the LVAD was HM 3, which operates between 3000 and 9000 rpm. Hence, we decided to increase the distance between the programmer head and the LVAD, while not changing the distance between the
pacemaker and the programmer head. As the pacemaker was in the same horizontal plane as the HM 3 (Figure 1), we interrogated from the back of the patient, maintaining the same distance as from the pacemaker to the precordium, but increasing the distance from HM 3, which we succeeded. As shown in Figure 2, only a narrow range could be interrogated due to subtle differences in location. We presumed that this location was right outside of the LVAD EMI distance and inside the pacemaker programmable distance (Figure 1D). According to the manufacturer’s instructions, the distance for interrogation with Micra and the programmer head should be less than 12.5 cm, which was 12.2 cm to the back in the current case.10

Although here we were able to finally interrogate the pacemaker, we must take into consideration the possibility that the interrogation may not be established. To avoid the leadless pacemaker being active even when it cannot be interrogated, turning off the pacemaker is preferred in case of converting HM II to HM 3 during the surgery to avoid malfunction or inability to interrogate the pacemaker. If interrogation is not achievable after the operation even from various positions, a transvenous pacemaker or implanting a new leadless pacemaker at the base of the right ventricle and searching for a position where interrogation is available should be considered, although the latter may be challenging.

Conclusions

Various EMIs are common in patients with LVAD. In case of leadless pacemaker interrogation interference, positioning the programmer at the back of the patient is useful to maintain a distance from the LVAD.

Acknowledgements:

We would like to thank Koji Ogawa for his technical help to interrogate the patient.
Declaration of Interest:
None

Funding:
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
References

7. Jin C, Hsu J, Frenkel D, Jacobson JT, Iwai S, Ferrick A. Unique technique to relieve left ventricular assist device electromagnetic interference with an implantable cardioverter

https://doi.org/10.1111/jce.14840

https://doi.org/10.1007/s10840-009-9415-6

https://doi.org/10.1111/pace.13210

10. Micra™ MC1VR01 Clinician manual.
Figure Legends

Figure 1

A. Chest X-ray with the leadless pacemaker and HM II.

B. Axial view of chest computed tomography. HM II is not in the same plane as the leadless pacemaker.

C. Chest X-ray with the leadless pacemaker and HM 3.

D. Axial view of chest computed tomography with the leadless pacemaker and HM 3. The blue circle indicates the presumed pacemaker programmable area, and the orange circle is the presumed LVAD EMI area.

Black arrowhead: Leadless pacemaker head; Red arrowhead: HM 3

Figure 2

Photographs of the programmer head in slightly different locations. The color of the programmer head is green when interrogation is available (Figure 2A) and orange when it is unavailable (Figure 2B–D).
Key Teaching Points

1. Electromagnetic interference between cardiac implantable electronic devices and the programmer head with left ventricular assist device (LVAD) has been reported with various solutions.

2. Turning off the pacemaker is preferred in case of converting HeartMate (HM) II to HM 3 during the surgery to avoid malfunction or inability to interrogate the pacemaker.

3. In case of leadless pacemaker interrogation interference, positioning the programmer head at the back of the patient can be useful to maintain a distance from the LVAD to enable interrogation of the pacemaker.