Cardioneuroablation: don't underestimate the posteromedial left atrial ganglionated plexus.

Ciro Ascione, MD, Léa Benabou, MD, Mélèze Hocini, MD, Pierre Jaïs, MD, Michel Haïssaguerre, MD, Josselin Duchateau, MD, PhD

PII: S2214-0271(22)00206-8
DOI: https://doi.org/10.1016/j.hrcr.2022.10.012
Reference: HRCR 1427

To appear in: HeartRhythm Case Reports

Received Date: 2 June 2022
Revised Date: 5 October 2022
Accepted Date: 10 October 2022

Please cite this article as: Ascione C, Benabou L, Hocini M, Jaïs P, Haïssaguerre M, Duchateau J, Cardioneuroablation: don’t underestimate the posteromedial left atrial ganglionated plexus., HeartRhythm Case Reports (2022), doi: https://doi.org/10.1016/j.hrcr.2022.10.012.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of Heart Rhythm Society.
Cardioneuroablation: don’t underestimate the posteromedial left atrial ganglionated plexus.

Short title: Cardioneuroablation redo for masked AV block

Ciro Ascione MD¹, Léa Benabou MD¹, Mélèze Hocini MD¹, Pierre Jaïs MD¹, Michel Haïssaguerre MD¹, Josselin Duchateau MD, PhD¹

¹Hôpital Cardiologique Haut-Lévêque, CHU de Bordeaux, L’Institut de RYthmologie et modélisation Cardiaque (LIRYC), Université de Bordeaux, Bordeaux, France.

CORRESPONDING AUTHOR:

Ciro Ascione

Division of cardiac electrophysiology, CHU de Bordeaux, Av. Magellan, 33604 Pessac

Email: ciroascione92@gmail.com

CONFLICT OF INTERESTS

The authors declare that there are no conflict of interests.

FUNDING

None.

DATA AVAILABILITY STATEMENT

Data of this study are available upon reasonable request from the corresponding author.

Word count: 1621
Keywords: Cardioneuroablation, catheter ablation, syncope, vagal denervation, ganglionated plexi.

INTRODUCTION

Cardioneuroablation (CNA) is a technique used to modulate cardiac parasympathetic tone in patients with sino-atrial (SA) and atrio-ventricular (AV) vagally mediated syncope. We describe the case of a patient who developed AV block after a first procedure of CNA, requiring a completion.

CASE REPORT

A 47-year-old man, with a medical history of OSAS and gastric bypass surgery for obesity presented repetitive episodes of reflex syncope. These episodes first appeared in 2010 and were associated with vegetative symptoms. Tilt table testing in another institution was able to reproduce the reflex syncope and demonstrated a VASIS type 1 profile (mixed response with drop in blood pressure and bradycardia, no asystole). In 2018 episodes progressively increased in frequency, and additional neurological investigation with an EEG and a brain MRI were performed, without any abnormal findings. Syncopal episodes became extremely frequent and recurred on a daily basis by the end of 2021. In November 2021 the patient underwent a video EEG, during which vasovagal sinus arrest was shown to precede the syncopal event (Figure 1 in the data supplement). The patient was then referred to our institution.

Physical examination was completely normal, blood pressure was 120/80 mmHg. The ECG showed sinus rhythm at 67 bpm, normal AV and IV conduction without repolarization.
alterations. Blood tests were unremarkable. He was under budesonide/formoterol and salbutamol inhalation therapy for asthma. During the ECG monitoring, different episodes of sinus bradycardia and symptomatic sinus pauses were documented, lasting up to 17 seconds at night. Since all the episodes were concomitant to high vagal status conditions and associated with parasympathetic signs and symptoms, a CNA procedure under general anaesthesia was scheduled. Pre-procedural atropine test was decided to not be performed in this case.

The patient was brought to the EP laboratory on January 26th, 2022. He was in sinus rhythm at 59 bpm. A preliminary EP study showed borderline SA nodal function (after a 1 minute of atrial pacing at 600 ms SNRT was 1460 ms, cSNRT was 420 ms). AV and HV intervals were respectively 50 and 46 ms, and the AV Wenckebach point (WP) was 540 ms.

The vagal nerve stimulation with a quadripolar catheter placed inside the internal right jugular vein at the level of the upper wisdom tooth, using a standard cardiac pacing system (Micropace system, frequency: 30 Hz, pulse width: 0.5 ms, current intensity: 25 mA), in the absence of a dedicated neural stimulator. It elicited a moderate response with a heart rate drop of 17 bpm (from 63 bpm to 46 bpm).

A map of both right and left atria (Figure 1) was obtained using a multipolar catheter (PentaRay, Biosense Webster Inc, Diamond Bar, CA). Ablation of the right superior and posterior ganglionated plexi (GP) was performed using a CT-guided anatomical approach, both from left and right atria. The CT segmentation was merged with the bi-atrial electro-anatomical map.

After the ablation, the EP parameters were tested again, with an improvement of SNRT (1060 ms, pacing at 600 ms) and WP at 360 ms. Right vagal stimulation no longer elicited a significant heart rate drop.
During the first night after the procedure, the patient had a recurrent episode of syncope with high grade AV block (Figure 2 in the data supplement). Sinus bradycardia or arrest was no longer recorded.

The patient was brought back to the EP laboratory the next day for a second procedure, this time under conscious sedation. Basal HR was 83 bpm. AH, HV, and PR intervals were respectively 50, 54, and 138 ms, the AV WP was 320 ms and AV ERP was 250 ms for a baseline cycle length of 600 ms. Since general anaesthesia was not available vagal nerve stimulation was not performed. The posteromedial left atrial GP was targeted this time, at the level of the coronary sinus ostium, from the right and left atria (Figure 2). After the ablation there was no sensible change in basal HR, the PR interval was slightly reduced to 120 ms (AH 32 ms, HV 56 ms), the WP decreased to 290 ms and AVN ERP decreased to below 200 ms.

A loop recorder (Biotronik BIOMONITOR) was implanted before discharge. At 4 months of follow-up, no bradyarrhythmias or recurrent syncopal episode were documented, and the patient has had no recurrent syncope.

DISCUSSION

Cardioneuroablation is a treatment for neurocardiogenic syncope, consisting of autonomic denervation via catheter ablation of GPs in both left and right atria. It is a technique described to modulate both sinoatrial and atrioventricular bradyarrhythmia, with good long term clinical outcomes. GPs are embedded in epicardial fat pads and there is no general consent on nomenclature. The ones commonly targeted, according to the classification made by Armour et al, are the superior right atrial GP (SRGP) and the posterior right atrial GP (PRGP), also referred as a single element, the right atrial GP (RAGP), respectively on the
posterior superior surface of the right atrium adjacent to the superior vena cava and on the
posterior surface of the right atrium adjacent to the interatrial groove, the superior left GP
(SLGP) on the posterior surface of the left atrium between the pulmonary veins, the inferior
left GP (ILGP) located in the inferoposterior area around the root of the left inferior
pulmonary vein, the posterior right atrial GP (PRGP) on the posterior surface of the right
atrium adjacent to the interatrial groove and the posteromedial left atrial GP (PMLGP)
located between coronary sinus ostium and lower part of the LA.

In canine models, there was a predominance of right vagal projections ending on SA nodal
tissue. The posterior and superior right GPs have been demonstrated to mediate vagal
influences preferentially via the SA node, and SRGP stimulation in some human studies
has shown to affect the SA node activity without AH interval prolongation. In animal
models, the sole ablation of the SRGP has been shown to mitigate both the right and left
vagal nerve stimulation-induced bradycardia, but to reduce only right vagal nerve mediated
AH interval prolongation, without significant effect on the left vagal nerve influence. In
humans, there were no statistical differences in heart rate modification after SLGP, ILGP, and
RIGP ablation, whereas heart rate increased significantly after SRGP (which was referred as
right anterior GP) ablation. For this reason, Right Superior and Right Posterior GPs are
considered by some authors as the primary targets of cardioneuroablation, even if other
studies showed that in some cases there is a residual response to vagal nerve stimulation, that
is eliminated through ablation of others GPs.

On the other hand, stimulation of the left vagus nerve elicited a greater change in AV
conduction time than did right vagal stimulation. In addition, supramaximal left vagal
stimulation is more likely to produce severe AV block than right vagal stimulation. Based
on different canine studies, this effect seems to be mediated through the Postero-Medial Left
GP (PMLGP), located at the inferior vena cava - left atrial junction, in close proximity to the CS ostium6,7.

Our patient had repetitive episodes of SA bradycardia and SA block, that may have masked any AV conduction alterations. There is currently no consensus on how to perform CNA, hence our initial approach was conservative, and anatomically guided ablation15 was restricted to the Right Superior and Right Posterior GPs, which innervate the SAN.

Given the unavailability of a dedicated system the vagal nerve stimulation was performed only during the first procedure with a standard EP pacing system, with the possibility to achieve only submaximal activation. Also, left vagal pacing could have unmasked a functional AV block, but for the overmentioned physiological principles vagal stimulation was performed only from the right side. Another way to facilitate AV block exposure, not performed in this case, is to pace from the atrium during the vagal stimulation.

Vagal denervation due to the ablation reduces heart rate variability and makes the heart unresponsive to atropine1,2. An atropine challenge test may be performed to evaluate the sinus node functionality and to assess the efficacy of the procedure. In our case however, it should be noted that the sinus node appeared entirely denervated after the first procedure, and hence the result of atropine test would likely have been non contributive.

CONCLUSIONS
This case report demonstrates that ablation restricted to the SRGP/PRGP may not be enough for neurocardiogenic syncope due to sinus arrest, even after what could be considered a good acute outcome. Functional AV block may be masked by the concomitant SA bradyarrhythmia. A more systematic approach, extending the ablation to the PMLGP, should be considered.

doi:10.1161/CIRCRESAHA.120.318458.

Figure 1

Three-dimensional mapping of the right and left atria at the time of the first procedure. White dots represent phrenic nerve capture at high output pacing, red dots represent ablation sites.

Figure 2

Three-dimensional mapping of the right and left atria at the time of the second procedure. Red dots represent ablation sites.
KEY TEACHING POINTS

- Different ganglionated plexi (GPs) have different effects on sinoatrial (SA) and atrioventricular (AV) conduction. While the superior right and posterior right GPs mostly affect the SA node, the predominant AV node influences come from the posteromedial left GP.

- It is important to consider ablation for ganglia that converge on both SA and AV node since functional AV block could be masked by concomitant SA bradyarrhythmia.

- Acute success indicators of cardioneuroablation should not be overestimated.